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Abstract

This independent work implements an end-to-end pipeline for reciprocal partner recommendation

and cohort-based matching, tailored to small campus settings. Participants complete a structured

questionnaire in which they report (i) their own response, (ii) which range or set of responses

they would accept from a partner, and (iii) an importance label per item. The system converts

these triad responses into directional satisfaction estimates, aggregates them into a symmetric

reciprocity-aware compatibility score, and then produces preference lists and matchings via stable

matching solvers.

Grounded in the accompanying code repository, we implement and document several compatibility

models: (1) a deterministic baseline that aggregates weighted hard acceptability with domain

multipliers, a user-specified priority boost, an overlap filter, and a finite-overlap penalty; (2) a

probabilistic acceptability model (PAM) that uses response-type-specific acceptability kernels and

uncertainty-aware lower confidence bounds (LCBs); (3) interpretable domain-wise distance-kernel

models, including a configurable scorer, a soft-gated learner trained with a pairwise ranking

objective, and an evolutionary configuration search procedure; and (4) a merged inverse document

frequency (IDF) + LCB pipeline that constructs tie-aware preference tiers for downstream matching.

Because Institutional Review Board (IRB) approval is pending, this draft reports no human-

subject empirical results. Instead, it specifies an evaluation framework for comparing scoring

models and downstream matching solvers using offline ranking, separation, and stability diagnostics

once IRB-approved data collection begins. Source code and non-sensitive artifacts are available at

https://github.com/Ammaar-Alam/matching-algorithm-repo.

https://github.com/Ammaar-Alam/matching-algorithm-repo


1. Introduction

Reciprocal recommendation differs from standard recommendation because a suggested match is

only useful if both people find each other acceptable. In a campus dating context, this reciprocal

constraint is coupled with system-level questions: how to (i) rank potential partners for a user in

real time, and (ii) periodically form stable matchings from a cohort to facilitate introductions.

The gap. Commercial dating apps like Tinder and Hinge use opaque machine learning models to

optimize for user engagement based on behavioral signals, including millions of swipes, messages,

and time spent on profiles. These methods are ill-suited to smaller campuses, since there are

fewer observations, a higher level of privacy is expected, and a greater social cost is associated

with any mistakes made through frequent interactions. Even OkCupid, whose personality-profile

questionnaire inspired the concept of user-facing compatibility scores (and ultimately our triad

questionnaire), operates at a scale and data-collection model incompatible with sensitive campus

settings and has few published reliability or validity outcomes.

Our approach. Our work develops a transparent, uncertainty-aware pipeline that operates primar-

ily from structured questionnaire responses without requiring behavioral logs. The key innovation is

a triad response format – inspired by OkCupid’s question design – where each participant provides

(i) their own answer, (ii) which partner answers they would accept, and (iii) an importance weight.

This triad representation supports both hard-constraint and probabilistic interpretations, enables

domain-level explainability, and naturally interfaces with stable matching algorithms that require

preference lists.

The focus of this paper remains on algorithmic compatibility scoring and how those scores

interface with matching solvers (preference lists with ties/incompleteness, stable matching, and

max-weight baselines), rather than the platforms in which these algorithms could be integrated.

1.1. Design goals and constraints

The project is shaped by four constraints:
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Reciprocity. A match is successful only if both sides would accept each other. This motivates

(i) directional satisfaction scores (how much u likes v) and (ii) symmetric aggregation rules that

penalize one-sided compatibility.

Transparency and explainability. Participants should understand what inputs drive recommen-

dations. This motivates explicit domain structure (values, lifestyle, etc.) and scoring functions that

can be decomposed into interpretable terms rather than end-to-end black boxes.

Small data. In early deployments, there may be few participants and no behavioral logs. This

motivates conservative scoring (e.g., confidence bounds) and learning procedures that explicitly

control overfitting.

Social and ethical sensitivity. Dating recommendations can cause embarrassment, reinforce bias,

or create safety issues. This motivates careful data handling, consent considerations, and avoiding

claims beyond the evidence.

1.2. IRB status and scope of this draft

Our work is currently constrained by ethics and logistics. IRB approval is pending, which blocks

recruitment and the reporting of human-subject empirical results in this draft. Accordingly, the

focus here is to (i) formalize the end-to-end scoring and matching pipeline and (ii) specify an

evaluation framework that can be executed verbatim once IRB-approved data collection begins.

During development, we validate the end-to-end code path (questionnaire ingestion→ pairwise

scores→ metrics and matchings) using synthetic inputs and unit tests. These tests also help surface

failure modes that inform future data collection and model design.

What this report does not claim. This report does not claim real-world effectiveness, statistical

significance, or generalization. It documents an implementation and a planned evaluation protocol.

1.3. Comparison axes and evaluation metrics

The repository defines an end-to-end pipeline with two conceptually separable components: (i) a

scoring model that maps two questionnaire responses to a reciprocity-aware compatibility score (or
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a tiered preference list), and (ii) a matching solver that consumes scores/lists to produce cohort-level

outcomes (a stable matching, a maximum-weight matching, etc.).

Our comparisons therefore vary two axes:

• Scoring model family. Baseline FinalMatch (hard acceptability), PAM+LCB (probabilistic

acceptability with uncertainty), distance-kernel models (configurable / soft-gated / evolutionary),

and a merged inverse document frequency (IDF) + LCB tiering pipeline.

• Matching solver. Deferred acceptance (DA), stable roommates, maximum-weight matching

(blossom), and a MILP “best stable” solver.

All variants are evaluated with a common family of offline metrics (Section 6.2): rank-based

partner-retrieval metrics (Hit@K, MRR, Mutual@K, rank statistics), true-vs-random separation

metrics, area under curve (AUC) and lift, and, when a matching is produced, matching-level

diagnostics (match rate, total weight, and blocking-pair counts under the induced preferences).

Parameters: fixed, tunable, learned, compared. To make comparisons unambiguous, we group

knobs into four categories:

• Fixed throughout: questionnaire specification (data/questions.json), domain labels d(q),

response parsing rules, missingness handling, and the cohort being scored.

• Default but tunable (held fixed unless ablated): baseline domain multipliers and priority boost;

importance mappings; PAM kernel parameters and LCB confidence level; merged-pipeline tie

and soft-cap thresholds.

• Learned from data: parameters of the soft-gated model, optional learned domain weights, and

the evolutionary configuration (mode/weights/kernel parameters per domain).

• Explicitly compared: (i) scoring-model choice, (ii) baseline hyperparameter variants (e.g.,

overlap penalty and aggregation rule), and (iii) downstream matching-solver choice.

1.4. Contributions (implementation-focused)

Within the above constraints, this paper delivers:

1. A formalization of the questionnaire-to-score pipeline implemented in the repository, including
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Table 1: What is compared in TIGERMATCH. Scoring models produce pairwise scores (or tiered pref-
erences) from questionnaires; matching solvers consume these to produce cohort-level matchings.

Component Output Example knobs Learned?

Baseline FinalMatch score matrix c, nmin, arithmetic vs geometric no
PAM+LCB score + uncertainty kernel params, confidence level, importance map optional
Distance-kernel (config) score matrix per-domain mode, (µ,σ) grids no
Soft-gated score matrix regularization, optimizer settings yes
Evolutionary search score matrix objective weights, search budget yes (via search)
Merged IDF+LCB tiered preferences IDF prior, softcap ρ , tie threshold τ no

Matching solvers matching DA / roommates / blossom / best-stable MILP no

notation and code-grounded formulas for directional and reciprocal scoring.

2. A deterministic baseline compatibility function

(algorithm/algorithms/core.py::final_match) with multiple hyperparameter variants

(algorithm/algorithms/variants.py).

3. A probabilistic acceptability model (PAM) with response-type kernels, importance compression,

and LCB-based uncertainty handling (Section 4.3).

4. Domain-wise distance-kernel scoring and learning procedures (soft-gated training and evolution-

ary search) grounded in algorithm/features, algorithm/scoring, and algorithm/ml.

5. A merged IDF+LCB pipeline that produces tie-aware preference tiers and connects to stable

matching solvers (algorithm/matching/*).

6. An evaluation harness and reporting framework for comparing scoring models and matching

solvers using offline ranking, separation, and stability diagnostics (Section 6).

1.5. Organization

Section 2 reviews matching markets, reciprocal recommendation, and uncertainty-aware scoring.

Section 3 describes the data and ethical constraints. Section 4 presents scoring and matching

algorithms. Section 5 summarizes implementation details. Section 6 specifies the evaluation

framework and metrics. Section 7 discusses limitations and ethical considerations.
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2. Background and Related Work

TIGERMATCH sits in the middle of matching theory and reciprocal recommendation. This section

reviews prior work to situate design choices and to clarify where the project departs from established

settings.

2.1. Stable matching and stable roommates

Matching theory studies allocation problems where participants have preferences over potential

partners. In the classical bipartite setting (“stable marriage” / college admissions), the deferred

acceptance algorithm of Gale and Shapley [1962] produces a stable matching and has become

foundational for market design. In many applications, stability is interpreted as the absence of a

blocking pair: two participants who would both prefer each other over their assigned outcomes.

Campus dating does not naturally partition participants into two disjoint sides, motivating the

stable roommates problem in a single population. Irving [1985] gives a polynomial-time algorithm

for stable roommates under strict preferences. In practice, preference lists may include ties and

incompleteness (participants find some partners unacceptable), connecting to the stable marriage

with ties and incomplete lists (SMTI) literature [Iwama et al., 1999].

2.2. Preferences derived from scores: ties and incompleteness

In classical matching theory, preferences are typically taken as primitive inputs: each agent submits

a strict ranking. In TIGERMATCH, preferences are derived from a score function S(u,v) computed

from questionnaire responses. This creates two practical issues.

Ties. If scores are coarse (for example, when many candidates satisfy the same set of acceptability

constraints), then ties are unavoidable. Ties matter because stability definitions assume strict

preferences. There are multiple ways to handle ties: (i) break ties arbitrarily (which may change

the outcome), (ii) treat ties as indifference and use a stability notion for weak preferences, or (iii)

incorporate ties directly into an optimization problem. TIGERMATCH primarily uses deterministic

tie-breaking for algorithms that require strict lists, but it also constructs explicit tie classes in the
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merged pipeline to make the presence of near-equivalent candidates visible.

Incomplete lists. A participant may deem many candidates unacceptable. In stable matching,

incomplete lists are standard: an agent can rank only acceptable partners and remain unmatched

otherwise. In a campus matching system, incompleteness is not just a modeling convenience; it’s

ethically important. Forcing a participant to be matched to someone they find unacceptable can

cause harm. TIGERMATCH therefore treats acceptability as a first-class concept: candidates that

violate mandatory constraints can be assigned very low scores or removed from the list entirely.

2.3. Polyhedral structure and optimization over stable outcomes

Beyond existence and construction, stable matchings admit a polyhedral characterization. Vande Vate

[1989] and subsequent work (including Rothblum [1992]) characterize stable matchings via linear

constraints. This supports optimization over stable matchings when multiple stable matchings

exist (e.g., maximizing total weight subject to stability), and it motivates mixed-integer or linear

programming approaches.

The repository includes an LP/MILP-style solver for selecting a high-weight stable matching

after generating preference lists (algorithm/algorithms/best_stable_lp.py), aligning with

this perspective.

2.4. Incentives and manipulation

Stable matching mechanisms raise incentive issues: participants may strategically misreport pref-

erences to obtain better outcomes. In the bipartite DA setting, strategy-proofness holds for one

side but not necessarily the other. Classical results such as Dubins and Freedman [1981] and Roth

[1982] motivate caution when deploying mechanisms that elicit preferences directly. While this

draft does not empirically study manipulation (IRB-approved data collection is pending), these

considerations are important for future deployment.

7



2.5. Reciprocal recommender systems

Dating recommendation is an instance of reciprocal recommendation, where recommendation

quality depends on mutual interest. RECON [Pizzato et al., 2010] is a notable early system that

explicitly models reciprocity in online dating. Xia et al. [2016] discuss design principles for

reciprocal recommenders, emphasizing the differences from unilateral recommendation and the

need for balancing both sides’ satisfaction.

Questionnaire-based approaches and OkCupid. OkCupid popularized a questionnaire-based

approach where users answer questions, specify acceptable partner answers, and indicate importance

– a triad format that directly inspired TIGERMATCH’s data representation.1 Their public writings

describe computing compatibility as weighted agreement over questions where both users care

about the answer. However, OkCupid operates at massive scale with proprietary algorithms and

extensive behavioral data; their approach is not directly transferable to a small, privacy-sensitive

campus setting. TIGERMATCH adapts the triad concept but adds uncertainty-aware scoring (LCBs),

domain-level structure, and explicit interfaces to stable matching solvers.

The questionnaire items themselves draw on established psychometric instruments. Personality

items are structured after the Ten-Item Personality Inventory [TIPI; Gosling et al., 2003], a brief

Big Five measure validated for contexts where time is limited. Values items draw on the Schwartz

theory of basic values and the Portrait Values Questionnaire [PVQ; Schwartz, 2012, Schwartz et al.,

2001], which provides a well-validated framework for assessing personal value priorities. Using

established instruments as templates improves content validity and connects the questionnaire to a

broader empirical literature on personality and values in relationships.

This paper’s scoring functions explicitly compute directional satisfaction and then aggregate to a

symmetric reciprocal score, mirroring this basic requirement.

1See C. Rudder, Dataclysm, Crown, 2014, for public descriptions of OkCupid’s matching methodology.
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2.6. Similarity versus complementarity

Relationship research and common intuition suggest competing hypotheses about what makes a

good match. Similarity models reward small distances in traits and values; complementarity models

reward moderate differences. In recommender-system terms, these correspond to different kernels

over feature distance.

Empirical evidence generally favors similarity, at least for attitudes and values. Montoya et al.

[2008] meta-analyzed actual and perceived similarity, finding that actual similarity is positively

associated with attraction. Luo and Klohnen [2005] found that newlywed couples showed substantial

attitude similarity, and Gaunt [2006] linked value similarity to marital satisfaction. However, the

picture is more nuanced for personality: Weidmann et al. [2023] found that personality similarity

effects on satisfaction are weak to negligible, suggesting that complementarity or irrelevance may

be more appropriate for some personality facets.

Rather than choosing a single hypothesis globally, TIGERMATCH uses domain-specific kernels

that can be configured as similarity, complementarity, or a learned mixture. This reflects a pragmatic

belief: different domains may behave differently. For example, similarity may be more important

for values, while complementarity could matter for social preferences.

2.7. Uncertainty-aware decision rules

When datasets are small, uncertainty matters. Confidence bounds are a classic tool for conservative

decision-making: they penalize estimates with high variance. TIGERMATCH uses lower confidence

bounds (LCBs) to downweight pairs where compatibility is driven by a small number of uncertain

items.

Uncertainty-awareness is especially important for transparency. A system that admits “we are

not confident about this match” can present results more honestly and can avoid over-emphasizing

weak signals.
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3. Data and Ethical Constraints

3.1. IRB status and recruitment gating

IRB approval is pending, so recruitment and human-subject data collection are currently blocked.

Accordingly, this draft reports no human-subject empirical results and focuses on algorithmic

methodology, implementation, and a pre-registered evaluation framework.

3.2. Planned offline evaluation design

Once IRB approval is obtained, we plan to evaluate the system using consenting established couples

as offline ground truth. Each participant completes the questionnaire independently, and we measure

whether the pipeline ranks their real partner highly within the cohort (Section 6). This partner

retrieval setting is intended as a conservative sanity check that the scoring function captures some

relationship signal; it is not a claim that an established partner is the globally optimal match, nor a

proxy for relationship success.

3.3. Data artifacts and privacy

The public repository includes the questionnaire specification (data/questions.json) and all

scoring/matching code. Evaluation scripts assume two private inputs that are not included in the

public repo:

• export.csv: raw responses (contains personally identifiable information),

• couples.csv: mapping of consenting established couples used as offline ground truth.

Because export.csv contains personally identifiable information (PII) and sensitive preferences,

it must be stored securely and should not be shared publicly. All reporting should use anonymized

identifiers and avoid reproducing raw responses. Derived artifacts (scores, ranks, and aggregate

tables) can be generated without copying raw PII fields.
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4. Methods: Compatibility Scoring and Matching Pipeline

This section formalizes the compatibility scoring pipeline implemented in the uploaded repository

snapshot. Every algorithm description below is grounded in specific file paths and function/class

names.

4.1. Questionnaire representation and notation

Let I = {1, . . . ,N} be the set of participants in a cohort, with N = |I |. Let Q be the set of question

ids in the questionnaire. Each question q ∈ Q has metadata:

• a domain d(q) (e.g., Values, Communication),

• a response type (Likert or multiple-choice),

• (for Likert) a discrete scale and a user-specified distance tolerance.

A triad response for participant u and item q consists of:

• a self-answer xu,q (e.g., a Likert value in {1,2,3,4,5} or a multiple-choice option; for multi-select

items we treat xu,q as a set of chosen options),

• an acceptable set/range Au,q describing which partner answers are acceptable, and

• an importance label wu,q indicating how much u cares about this item when evaluating a partner.

In the exported participant table (the repository assumes a CSV such as export.csv), each

participant i has:

• self response xi,q stored as a column SELF_{qid},

• acceptability specification stored as JSON ACC_{qid} (or missing),

• importance stored as a numeric label IMP_{qid}.

The pipeline computes, for each ordered pair (i, j) and each item q, a directional acceptability

value

ai→ j(q) ∈ [0,1],

interpreted as “how acceptable is j to i on item q?”

In the deterministic baseline, ai→ j(q) ∈ {0,1}. In PAM, ai→ j(q) is a probability computed by a
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kernel, and uncertainty is tracked.

A core design choice throughout the repository is to compute directional satisfaction scores first

and then aggregate reciprocally.

4.2. Baseline FinalMatch (hard acceptability)

Implementation. The baseline deterministic score is implemented in:

• algorithm/algorithms/core.py::final_match (main scoring function),

• algorithm/algorithms/core.py::_acceptability_ok (item-level acceptability check),

• algorithm/algorithms/core.py::_domain_multiplier and

algorithm/algorithms/core.py::DEFAULT_DOMAIN_MULTIPLIER (domain multipliers and

priority boosts),

• algorithm/algorithms/core.py::IMPORTANCE_WEIGHT (importance mapping),

• algorithm/algorithms/variants.py (variant hyperparameter presets).

4.2.1. Item-level acceptability Given participants i and j and item q, the baseline computes a

binary indicator

ahard
i→ j(q) ∈ {0,1},

by calling _acceptability_ok(a_self, a_acc, b_self, qmeta) with a = i and b = j.

Likert items. For Likert response types, _acceptability_ok parses the acceptability JSON

ACC_{qid} (if present) to extract a tolerance "tol" in steps. If tol==999, acceptability is always

true. Otherwise, it checks whether

|xi,q− x j,q| ≤ τi,q,

where τi,q is the tolerance in steps.

Multiple-choice items. For MC_SINGLE and MC_MULTI, _acceptability_ok constructs a set

Si(q) of acceptable options: if ACC_{qid} is present, it uses the list under "acc"; otherwise it

defaults to i’s own selection(s) SELF_{qid}. Acceptability is then:

• MC_SINGLE: accept iff x j,q ∈ Si(q),
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• MC_MULTI: accept iff Si(q)∩X j,q ̸= /0, where X j,q is the set of options selected by j on item q.

If an acceptability JSON is malformed, missing, or the response is missing, the function returns

false or skips the item depending on the missingness checks upstream in final_match.

4.2.2. Importance weights, domain multipliers, and top priorities

Importance mapping. The baseline maps IMP_{qid} to a nonnegative weight via

IMPORTANCE_WEIGHT in core.py. The default mapping is the identity on the OkCupid-style label

set:

0 7→ 0, 1 7→ 1, 10 7→ 10, 50 7→ 50, 250 7→ 250.

This identity mapping is a tunable default; alternative mappings (e.g., compressed importance as in

PAM, Section 4.3) can be substituted. This weight is applied directionally: i’s importance on item q

affects i’s satisfaction score, and j’s importance affects j’s satisfaction score. These are deliberately

spread out to make Mandatory (250) act like a near-hard constraint: one violated mandatory item

can dominate many satisfied low-importance items.

Domain multipliers. Each item’s contribution is multiplied by a domain multiplier. DEFAULT_-

DOMAIN_MULTIPLIER sets:

Values = 5.0, Communication = 3.0,

Lifestyle = 3.0, Social = 0.5,

Personality = 0.5, Friendship = 0.5.

Any domain not listed defaults to 0.0 and is excluded from scoring.

Domain weighting rationale. While these multipliers are ultimately hand-tuned, their relative

ordering draws on empirical findings from relationship science about which partner characteristics

most strongly predict partner selection (assortative mating) and relationship outcomes.

Values receive the highest weight because partner correlations are consistently strongest for

political and religious attitudes, educational attainment, and related value-laden constructs. Horwitz

et al. [2023] analyzed 133 traits in the UK Biobank and reviewed meta-analyses of 22 traits, finding
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that partners assort most strongly on political/religious attitudes and educational attainment, while

psychological and personality traits show weaker (though still positive) partner correlations. Luo

and Klohnen [2005] found substantial similarity on attitude-related domains but little similarity

on personality domains in newlyweds, and Gaunt [2006] demonstrated that similarity on attitudes

and values is associated with marital satisfaction. More recent work by Leikas et al. [2018] using

response-surface methods confirms that attitudes and values constitute a distinct similarity domain

with measurable links to relationship satisfaction. A meta-analysis by Montoya et al. [2008] further

supports the general premise that similarity, especially in attitudes and values, is tied to attraction

and relationship formation.

Communication receives high weight because conflict communication patterns show robust

associations with relationship outcomes and stability. Schrodt et al. [2014] conducted a meta-

analysis of the demand/withdraw interaction pattern and reported a moderate association (r ≈ .36)

between this pattern and relationship outcomes. The classic longitudinal review by Karney and

Bradbury [1995] established that interaction patterns, particularly negative affect during conflict, are

key predictors of marital quality and stability. Gottman and Levenson [1992] provided observational

evidence that specific communication behaviors during conflict predict later dissolution. Although

Lavner et al. [2016] note that the causal direction between communication and satisfaction is

complex, the cross-sectional associations are strong, justifying communication as a high-leverage

domain.

Personality similarity receives lower weight for two reasons: (i) partner similarity on Big Five

traits is empirically small, and (ii) personality effects on relationship outcomes operate primarily

through actor/partner trait levels rather than similarity. Weidmann et al. [2023] found that personality

similarity often plays a negligible role in explaining relationship satisfaction across both traits

and facets. Bach and Malouff [2025] reports partner-trait correlations for Big Five in the range

0.00≤ r ≤ 0.15, indicating low resemblance. While Malouff et al. [2010] found that Big Five traits

do relate to relationship satisfaction (with neuroticism showing the strongest negative association),

these effects are actor/partner effects rather than similarity effects. This suggests that personality is
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relevant but should not dominate scoring; the current implementation captures personality through

trait-distance features rather than relying heavily on personality similarity in the acceptability

weighting.

Lifestyle receives moderate weight because many day-to-day traits and behaviors show substan-

tial partner assortment. Horwitz et al. [2023] found meaningful partner correlations on lifestyle-

related traits including substance use behaviors and daily habits. These domains plausibly affect

friction and fit in daily life, justifying a weight above personality similarity but below values and

communication.

Measurement considerations. The relatively low weight on Personality also reflects measure-

ment limitations. The questionnaire uses short-form personality items inspired by the Ten-Item

Personality Inventory [TIPI; Gosling et al., 2003], which trades reliability for brevity. In small

samples, short personality measures introduce substantial measurement error, making it prudent to

downweight personality similarity in the absence of more reliable assessment. The Values domain

draws on item structures inspired by the Portrait Values Questionnaire [Schwartz, 2012, Schwartz

et al., 2001], which has stronger psychometric foundations and supports the heavier weighting.

Epistemic humility. We emphasize that compatibility claims in online dating require humility.

As Finkel et al. [2012] argue, many compatibility and matching claims lack strong evidence, and

transparent evaluation is essential. The present weighting scheme is a starting point informed by

existing literature, not a claim of optimality. The modular design allows weights to be adjusted as

empirical evidence accumulates from actual deployments.

Top-3 priorities boost. Participants also answer a priority question (qid 47) used to extract a

set of top priorities. core.py::extract_priorities_from_q47 parses SELF_47 as JSON and

returns a list of selected domains; we denote the resulting set by Pi for participant i. core.py::_-

domain_multiplier multiplies the base domain multiplier by a priority_boost (default 1.5 in

final_match) when the item’s domain is in the participant’s extracted priorities.

4.2.3. Directional satisfaction and reciprocal aggregation For a pair (i, j), final_match iterates

over all questions in qmeta["questions"] and accumulates weighted acceptability for each
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direction.

Define the directional item weight:

wi,q = IMPORTANCE_WEIGHT(Ii,q) ·_domain_multiplier(d(q); prioritiesi),

where Ii,q is the raw importance label for participant i on item q, and prioritiesi is the set of top-3

priority domains extracted from participant i’s response to question 47. The _domain_multiplier

function returns the base domain multiplier (from DEFAULT_DOMAIN_MULTIPLIER) scaled by 1.5

if d(q) is in the participant’s priority set.

An item q contributes only if at least one direction has nonzero weight (the implementation skips

only when both wi,q = 0 and w j,q = 0). For each contributing item, it computes ahard
i→ j(q) and ahard

j→i(q)

and accumulates:

numi→ j← numi→ j +wi,q ahard
i→ j(q), deni→ j← deni→ j +wi,q,

and similarly for j→ i.

Directional satisfaction (as implemented) is:

si( j) =
numi→ j

deni→ j
∈ [0,1], (1)

with the convention that if deni→ j = 0 then si( j) = 0 (see the if denA > 0 else 0.0 logic in

final_match).

Mutual aggregation. The baseline then aggregates the two directional satisfactions into a sym-

metric match score. If use_symmetric_mean=False (the default in final_match), it uses a

geometric mean:

match(i, j) = 100·
√

si( j)s j(i). (2)
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If use_symmetric_mean=True, it uses an arithmetic mean (note: both the geometric and arithmetic

means are symmetric functions; the parameter name reflects the implementation convention):

match(i, j) = 100·
si( j)+ s j(i)

2
.

4.2.4. Overlap filter and finite-sample penalty

Overlap counting. final_match counts the number of items n that were considered (incremented

once per question when at least one side’s weight is nonzero and neither self response is missing).

If n < nmin (parameter min_overlap, default 20), it returns None.

Finite-overlap penalty. If n≥ nmin, it applies a penalty of the form c/
√

n, implemented as:

penalty(n) =
c√
n
,

where c is c_penalty (default 100.0). The final score is:

final(i, j) = max{0, match(i, j)− c/
√

n}. (3)

Hyperparameter variants. algorithm/algorithms/variants.py defines named variants

such as core_c100_n20_geo (geometric mean, c = 100, nmin = 20) and symm_c100_n20_mean

(arithmetic mean, c = 100, nmin = 20), and additional variants over c ∈ {60,100,140} and nmin ∈

{15,20,25} intended for ablation studies.

4.3. Probabilistic Acceptability Model (PAM) + LCB

Implementation. PAM and its uncertainty-aware LCB scoring are implemented across:

• Acceptability kernels: algorithm/models/accept_kernels.py::AcceptabilityParams,

p_likert, p_mc,

• Importance compression: algorithm/models/importance_map.py::COMPRESSED_IMPORTANCE,

• Domain weights: algorithm/models/domain_weights.py::DEFAULT_DOMAIN_WEIGHTS,
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• Multiple-choice similarity: algorithm/models/mc_similarity.py::build_mc_similarity,

• Directional stats (mean/variance):

algorithm/scoring/directional.py::directional_stats,

• Lower confidence bounds: algorithm/eval/evaluate_pam.py::lcb_from,

• Symmetric pair scoring: algorithm/scoring/pair_score.py::score_pair and

algorithm/scoring/pair_score.py::combine_scores.

Hard acceptability can be brittle: it assigns the same penalty to slightly-off and wildly-off answers,

and it ignores the uncertainty introduced by coarse tolerance categories. PAM replaces the baseline’s

hard acceptability ahard
i→ j(q) with a soft probability

pi→ j(q) ∈ [0,1],

and tracks uncertainty through an estimated variance of the weighted mean.

4.3.1. Likert acceptability kernel For Likert items, accept_kernels.py::p_likert maps an

absolute step distance ∆ and a tolerance in steps τ to a probability.

The function computes:

x =
∆

τ +1
,

and then applies a logistic transform with a piecewise offset based on τ:

plikert(∆,τ) =
1

1+ exp(α(x−ητ(x)))
,

where α = AcceptabilityParams.alpha and ητ(x) is either bτ or aτ depending on whether

x < bτ (see the piecewise if x < b: z = alpha*(x-a) logic). The default parameters are

provided by AcceptabilityParams.from_defaults:

α = 5.0, aτ ∈ {−1.5,−1.0,−0.7} for τ ∈ {0,1,2}, bτ ∈ {0.8,0.6,0.4} for τ ∈ {0,1,2}.

(Exact values are in accept_kernels.py::from_defaults.)
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4.3.2. Multiple-choice kernel For multiple-choice items, directional.py::directional_-

stats computes a similarity score between j’s selection(s) and i’s acceptable set by taking a maxi-

mum similarity over option pairs using a precomputed similarity map (from mc_similarity.py).

It then applies accept_kernels.py::p_mc(sim):

pmc(s) =
1

1+ exp(αmc(1− s))
,

where αmc = AcceptabilityParams.alpha_mc (default −1.0). Because αmc < 0 by default,

pmc increases as similarity s increases.

4.3.3. Compressed importance mapping Unlike the baseline, PAM compresses the impor-

tance weights so that “mandatory” items don’t dominate. importance_map.py::COMPRESSED_-

IMPORTANCE maps:

0 7→ 0, 1 7→ 1, 10 7→ 3, 50 7→ 6, 250 7→ 10.

The rationale is that probabilistic acceptability already introduces smoothness; extreme weight

ratios can destabilize variance estimates and confidence bounds.

Directional item weights in PAM are then:

wPAM
i,q = CompImp(Ii,q) ·Wdom(d(q)),

where Wdom is a domain weight (Section 4.3.4).

4.3.4. Domain weights PAM uses the same base domain multipliers as the baseline via domain_-

weights.py::DomainWeights.from_defaults, which wraps
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core.py::DEFAULT_DOMAIN_MULTIPLIER. In the default map:

Values = 5.0, Communication = 3.0,

Lifestyle = 3.0, Social = 0.5,

Personality = 0.5, Friendship = 0.5.

Unlisted domains default to 0.0 and are excluded from scoring. These weights are applied mul-

tiplicatively to compressed importance. The rationale for this weighting hierarchy (Values >

Communication/Lifestyle > Personality/Social/Friendship) is provided in Section 4.2.2 and draws

on assortative mating and relationship outcome research [Horwitz et al., 2023, Luo and Klohnen,

2005, Schrodt et al., 2014, Weidmann et al., 2023].

4.3.5. Directional mean/variance and LCB

Directional weighted mean. For a fixed ordered pair (i, j), directional_stats computes:

ŝi( j) =
∑q∈Qi j wPAM

i,q pi→ j(q)

∑q∈Qi j wPAM
i,q

,

where Qi j are questions that have kernel parameters, nonzero weight, and defined self-responses.

Directional variance proxy. The same function computes an estimated variance of the weighted

mean using a Bernoulli proxy:

V̂ar[ŝi( j)] =
∑q∈Qi j(w

PAM
i,q )2 pi→ j(q)(1− pi→ j(q))(

∑q∈Qi j wPAM
i,q

)2 .

It also tracks an “effective sample size” proxy:

neff =

(
∑q wq

)2

∑q w2
q

,

implemented as neff = (Wsum**2)/(W2sum + 1e-12).
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Lower confidence bound. Given (ŝ, V̂ar,neff), evaluate_pam.py::lcb_from computes a lower

confidence bound. The default is kind="normal", which uses:

LCB = max{0, ŝ− z
√

V̂ar},

where z = Φ−1(1− δ ) and δ is a configurable tail probability (default 0.1 in lcb_from). The

function also supports kind="bernstein" (empirical Bernstein-style) and kind="hoeffding".

4.3.6. Symmetric combination rule Given directional LCBs for both directions, PAM forms

a symmetric score by combining them in log-odds space. pair_score.py::combine_scores

defines:

score(i, j) = logit(LCBi→ j)+ logit(LCB j→i),

where logit clips inputs to [ε,1− ε] for numerical stability.

This rule penalizes pairs where either direction has a small LCB (since logit(p)→−∞ as p→ 0).

It explicitly enforces reciprocity: both directional acceptability estimates matter.

4.3.7. End-to-end PAM scoring pair_score.py::score_pair ties the above pieces together:

it calls directional_stats twice (once for i→ j and once for j→ i), computes LCBs and radii

(confidence radii), and returns both the combined symmetric score and a diagnostic dictionary.

A separate evaluation script algorithm/eval/evaluate_pam.py::main loads participant

data, computes PAM scores for true couples and sampled non-partners, and writes a summary CSV

(default algorithm/out/summary_pam.csv) plus a per-couple pairs file with the same basename

and suffix .pairs.csv .

4.4. Distance-kernel models: per-domain mutuality and trait distance

High-level idea. A separate family of models decomposes compatibility into domain-wise compo-

nents and explicitly allows each domain to behave as either a similarity domain (partners closer in

traits are better) or a complementarity domain (partners farther apart are better), with an irrelevant

option. The models operate on precomputed feature tensors:
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• Mutual acceptability tensor m(d)
i j derived from directional LCBs for domain d,

• Distance tensor δ
(d)
i j measuring how far apart two participants are in that domain (from normal-

ized self-responses),

• Reliability tensor r(d)i j (currently set to 1 everywhere in make_features.py).

Implementation reference.

• Pairwise tensor construction: algorithm/features/build_pair_tensors.py::build_-

lcbs, algorithm/features/build_pair_tensors.py::build_distances, and

algorithm/features/build_pair_tensors.py::main.

• Feature packaging: algorithm/features/make_features.py::main.

• Configurable scoring: algorithm/scoring/config_scorer.py::ConfigurableScorer and

algorithm/scoring/config_scorer.py::score_pair.

• Learning: algorithm/ml/soft_gated_trainer.py::SoftGatedTrainer and

algorithm/ml/evolutionary_trainer.py::evolutionary_search.

4.4.1. Feature tensors

Directional LCB tensors. build_pair_tensors.py::build_lcbs computes, for each or-

dered pair (i, j) and each domain d:

LCB(d)
i→ j ∈ [0,1], r(d)i→ j ≥ 0, n(d)eff, i→ j ≥ 0,

and returns them as numpy arrays with shape (N, N, D, 2), where the final axis indexes direction:

index 0 stores i→ j and index 1 stores j→ i for the same ordered pair (i,j). (See the assignments

in the nested loops of build_lcbs.)

The routine internally uses the PAM directional scoring functions: it builds a per-domain list of

question ids, computes directional means and variances using

algorithm/scoring/directional.py::directional_stats, and converts them into LCBs

via algorithm/eval/evaluate_pam.py::lcb_from.
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Mutual acceptability. Given the directional LCB tensor, make_features.py::main constructs

a mutual acceptability tensor:

m(d)
i j =

√
LCB(d)

i→ j ·LCB(d)
j→i,

implemented as mutual = np.sqrt(lcb[:,:,:,0] * lcb[:,:,:,1]).

Trait distances. build_pair_tensors.py::build_distances constructs a per-domain dis-

tance tensor from self-responses as follows.

First, it loads a normalization JSON (produced by algorithm/preprocess/normalize.py)

that stores per-item min and max values. For each domain d, it creates a matrix X (d) ∈ RN×|Qd | of

normalized self-responses:

X (d)
i,q = clip[0,1]

(
xi,q−minq

(maxq−minq)+10−9

)
,

for each question id q in domain d that appears in the normalization JSON. Entries are set to NaN if

the self-response is missing or non-numeric.

Then, for each pair (i, j), it computes the mean absolute difference over questions where both

normalized values are present:

δ
(d)
i j =

1

|Q(d)
i j |

∑
q∈Q(d)

i j

∣∣∣X (d)
i,q −X (d)

j,q

∣∣∣ ,

where Q(d)
i j is the set of questions in domain d for which both X (d)

i,q and X (d)
j,q are finite. This is

implemented by broadcasting differences and averaging only over finite entries (see dom_dist

= sum_diff / cnt in build_distances). If |Q(d)
i j | = 0, the implementation leaves δ

(d)
i j at its

initialized value of 0.0 for that domain/pair.

Reliability. In the packaged features file, make_features.py currently sets the reliability tensor

to all ones: rel = np.ones_like(dist, dtype=np.float32). This is a placeholder for later
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extensions where domains with few contributing items might be downweighted.

Kernel grids. make_features.py::main also writes fixed candidate grids: mus_sims = [0.0,

0.25], mus_comps = [0.5, 0.75, 1.0], and sigmas = [0.15, 0.25, 0.35] (all float32),

which are used by the evolutionary configuration search.

4.4.2. Configurable scoring function Given tensors (m(d)
i j ,δ

(d)
i j ,r(d)i j ) and a per-domain configura-

tion, ConfigurableScorer.score_pair computes:

S(i, j) = ∑
d

wd ·
(
m(d)

i j
)αd ·

(
kd(δ

(d)
i j )
)βd ·r(d)i j , (4)

with nonnegative weights wd and exponents αd,βd .

The kernel kd is chosen according to mode:

ksim(δ ;σ) = exp

(
−
(

δ

σ

)2
)
, kcomp(δ ; µ,σ) = exp

(
−1

2

(
δ −µ

σ

)2
)
.

Here δ = δ
(d)
i j ∈ [0,1] is the normalized mean absolute trait distance in domain d (Section 4.4). The

similarity kernel ksim is an RBF/Gaussian centered at δ = 0; the bandwidth σd > 0 controls how

quickly similarity decays as two participants differ. The complementarity kernel kcomp is a Gaussian

centered at δ = µd , where µd ∈ [0,1] specifies the target distance (e.g., “moderately different”) and

σd specifies tolerance around that target.

• similarity: kd(δ ) = ksim(δ ;σd),

• complementarity: kd(δ ) = kcomp(δ ; µd,σd),

• mixed: kd(δ ) =
1
2

(
ksim(δ ;σd)+ kcomp(δ ; µd,σd)

)
,

• irrelevant: kd(δ ) = 1.

(See k_sim, k_comp, and the mode logic in config_scorer.py::score_pair.)

Kernel intuition.

• The similarity kernel ksim peaks at δ = 0 (identical trait values) and decays as distance increases.

Smaller σ makes it more selective (sharply penalizing even small differences).
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• The complementarity kernel kcomp peaks at δ = µ and penalizes both distances below and above

the target. This models the hypothesis that moderate differences (e.g., µ = 0.5) are optimal

for some traits. The bandwidth σ controls how sharply the kernel falls off around the optimal

difference.

4.4.3. Soft-gated training

Model. The soft-gated model learns parameters per domain d: a nonnegative domain weight

wd (implemented as relu(self.w[d])), a gating intercept/slope (ad,bd), and kernel parameters

(µd,σd). For a given pair (i, j) in domain d, it computes a gate value

g(d)i j = sigmoid
(
ad +bd δ

(d)
i j
)
,

where sigmoid(t) = 1
1+exp(−t) .

and combines similarity and complementarity kernels per pair:

k(d)i j = g(d)i j kcomp(δ
(d)
i j ; µd,σd)+(1−g(d)i j )ksim(δ

(d)
i j ;σd).

The final score is:

Ssoft(i, j) = ∑
d

ReLU(wd) ·m(d)
i j ·k(d)i j ,

matching SoftGatedTrainer.score.

Objective. Training uses a Bayesian Personalized Ranking (BPR)-style pairwise loss over triples

(i, p(i),n) where p(i) is the true partner and n is a sampled negative:

LBPR(θ) = − logsigmoid
(
Sθ (i, p(i))−Sθ (i,n)

)
,

implemented in SoftGatedTrainer.step via a logistic loss. This pushes the model to score true

partners above sampled non-partners.
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Regularization. The implementation adds: (i) optional ℓ1 penalty on the ReLU weights wd (l1),

(ii) an “exclusivity” penalty relu(a)*relu(b) averaged over domains (excl), and (iii) a penalty

that discourages very small σ (sigma_penalty in step).

Interpretable mode labeling. After training, SoftGatedTrainer.infer_modes produces a

domain-level label by comparing the magnitudes of ReLU(ad) and ReLU(bd): if wd is tiny the

domain is labeled irrelevant; if ReLU(ad) ≥ 2ReLU(bd) it’s labeled similarity; if ReLU(bd) ≥

2ReLU(ad) it’s labeled complementarity; otherwise it’s labeled mixed.

4.4.4. Evolutionary configuration search The evolutionary search procedure

(algorithm/ml/evolutionary_trainer.py::evolutionary_search) performs a discrete

random search over domain configurations. A configuration specifies, per domain, a mode (similar-

ity/complementarity/irrelevant), weights, and kernel parameters (µ,σ) drawn from the candidate

grids in features.npz. Given a configuration, scoring is performed by ConfigurableScorer,

and metrics are computed using the evaluation harness

algorithm/eval/harness.py::run_harness.

The objective used to select the best configuration is defined in evolutionary_search as:

J = 3·Hit@1 + 2·Mutual@K + 1·Hit@K + 0.5·AUC,

where K is the harness top-K parameter (default topk=3).

Objective term rationale.

• Hit@1 (weight 3): Measures whether the true partner is ranked first. This receives the highest

weight because exact top-1 recovery is the most demanding test of compatibility scoring.

• Mutual@K (weight 2): Measures whether both partners in a couple rank each other in the top-K.

This captures reciprocal success, which is essential for matching applications where both sides

must find each other acceptable.

• Hit@K (weight 1): Measures whether the true partner appears anywhere in the top-K list. This is

a softer criterion than Hit@1 and rewards configurations that place partners near the top even if
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not exactly first.

• AUC (weight 0.5): Measures overall separation between true-couple scores and random-pair

scores. This receives the lowest weight because it captures global ranking quality rather than

top-K precision, which is more relevant for recommendation.

In the evaluation plan, this objective is used only for model selection inside the evolutionary search;

final reporting uses the full metric suite on held-out data.

4.5. Merged IDF+LCB pipeline and matching

Implementation. The merged pipeline and matching solvers referenced in this report are:

• IDF weighting and merged scoring: algorithm/matching/merged_pipeline.py::compute_-

idf_weights,

algorithm/matching/merged_pipeline.py::score_pair_idf_lcb,

algorithm/matching/merged_pipeline.py::build_preference_lists, and

algorithm/matching/merged_pipeline.py::summarize_true_partner_ranks.

• Deferred acceptance (DA): algorithm/matching/da.py::gale_shapley_da and

algorithm/matching/da.py::da_with_ties.

• Stable roommates: algorithm/matching/irving.py::stable_roommates.

• Maximum-weight matching: algorithm/matching/blossom.py::max_weight_matching.

• “Best stable” LP/MILP: algorithm/algorithms/best_stable_lp.py::best_stable_matching.

4.5.1. IDF-style item reweighting The merged pipeline introduces an IDF-style reweighting to

emphasize “rarer” traits/items. It builds per-item inverse-frequency weights from item similarity

statistics computed over the cohort.

Item similarity. For each question q, merged_pipeline.py::compute_idf_weights con-

structs an ItemSim object using build_item_sims.

• For Likert items, similarity is defined as 1−∆/(S−1), where ∆ is the absolute difference in step

values and S is the number of steps (see item_sims.py::LikertSim.sim).

• For MC_SINGLE, similarity is 1 if equal else 0.
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• For MC_MULTI, similarity is the Jaccard index between the two option sets.

IDF transform with shrinkage. For each item, it computes an average similarity across all

ordered pairs i ̸= j and applies an IDF transform. rarity.py::idf_with_shrink first shrinks

the observed average similarity toward a prior mean using a Beta prior parameterized by prior_-

strength and prior_mean (see idf_with_shrink signature), and then returns:

idf(q) = log
(

1
max(ε, sq)

)
,

where sq is the (shrunk) mean similarity and ε is a small clip constant. This yields larger weights

for items whose average similarity is low (i.e., responses are more “specific” in this cohort).

4.5.2. Soft-capped domain contributions merged_pipeline.py::score_pair_idf_lcb com-

putes a reciprocal score by aggregating domain-level components and applying a soft cap to avoid

single-domain domination.

For each domain d, it computes directional LCBs and radii using directional_stats and

lcb_from, but with per-item weights multiplied by IDF and by a base importance weight w_base.

It then forms a mutual domain score (geometric mean) and aggregates across domains. Before

final aggregation, it applies a soft cap parameter softcap_rho: if the top domain contributes more

than a ρ fraction of the total, it rescales the top contribution downward (see the explicit logic in

score_pair_idf_lcb).

4.5.3. Preference tiers with ties Given a score (and an uncertainty radius) for each candidate

partner, merged_pipeline.py::build_preference_lists constructs preference tiers rather

than strict rankings.

For each participant i, it sorts candidates j by decreasing LCB score. It then groups consecutive

candidates into the same tier if the LCB gap is not large relative to uncertainty: if the previous

candidate had LCB ℓprev with radius rprev and the current candidate has LCB ℓ with radius r, they

are tied if

ℓprev− ℓ ≤ τ ·(rprev + r),
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where tie_tau is a configurable parameter (default 0.5). This produces a list of tiers tiers[i]

where each tier is a list of candidate indices.

The same routine can enforce an acceptability cutoff (drop candidates whose LCB is below

min_lcb) and can apply an additional mutuality boost for pairs who appear in each other’s top-K

tiers (parameter mutual_boost).

4.5.4. From preference tiers to matchings The repository supports multiple matching solvers that

consume preference information:

Deferred acceptance (DA). In a bipartite setting, matching/da.py::gale_shapley_da runs

the standard proposer-optimal DA algorithm. The repository also includes a tie-aware version

da_with_ties that breaks ties randomly by shuffling within tiers (see da.py).

Stable roommates. For a one-population setting with strict preferences,

matching/irving.py::stable_roommates implements Irving’s algorithm.

Max-weight matching (blossom). Given a symmetric weight matrix,

matching/blossom.py::max_weight_matching uses NetworkX’s max-weight matching to

produce a maximum-weight pairing (not necessarily stable).

Best stable LP/MILP. algorithm/algorithms/best_stable_lp.py::best_stable_matching

formulates an optimization problem over matchings that are stable with respect to provided pref-

erence lists. It constructs a weight matrix from scores, introduces binary decision variables for

matches, adds feasibility constraints (each participant matched to at most one partner), and then

adds stability constraints based on preference ranks (see the construction of better_or_equal

sets and constraints in best_stable_lp.py). It then solves via PuLP and returns the best stable

matching under the objective. If the solver does not report an optimal solution, it falls back to a

DA-based matching (see the if LpStatus... != "Optimal" branch).

5. Implementation Details

This section documents how the repository is organized and how the evaluation scripts connect.
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5.1. Code organization and responsibilities

The repository is organized as:

• Baseline compatibility: algorithm/algorithms/core.py and

algorithm/algorithms/variants.py.

• PAM model components: algorithm/models/accept_kernels.py,

algorithm/models/importance_map.py,

algorithm/models/domain_weights.py,

algorithm/models/mc_similarity.py.

• Directional and pair scoring:

algorithm/scoring/directional.py, algorithm/scoring/pair_score.py.

• Feature tensors and ML: algorithm/features/*, algorithm/ml/soft_gated_trainer.py,

algorithm/ml/evolutionary_trainer.py, algorithm/scoring/config_scorer.py.

• Matching solvers and merged pipeline:

algorithm/matching/*, algorithm/algorithms/best_stable_lp.py.

• Evaluation harness and metrics:

algorithm/eval/harness.py, algorithm/eval/evaluate_couples.py, and scripts un-

der algorithm/paper/ used to compare algorithms and generate report tables.

5.2. Evaluation scripts and outputs

Given private inputs (export.csv, couples.csv) after IRB approval, the evaluation scripts

generate outputs such as:

• algorithm/out/ and algorithm/out_ml/ (baseline and baseline+learned weights),

• algorithm/out_pam/ (PAM training and evaluation artifacts),

• algorithm/out_soft/ (soft-gated training),

• algorithm/out_evo/ (evolutionary search),

• algorithm/out_merged/ (merged IDF+LCB pipeline and preference tiers),

• algorithm/out_paper/ (cross-algorithm comparison tables for the report).
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6. Evaluation Framework

This section specifies how we will evaluate scoring models and matching solvers once IRB-

approved data collection begins. The evaluation code paths referenced throughout the report

(algorithm/eval/* and algorithm/paper/*) already compute the metrics below; the goal here

is to define the protocol and clarify what is being compared.

6.1. Offline evaluation setting

We evaluate in a closed cohort I = {1, . . . ,N} of participants who complete the questionnaire. For

offline ground truth, we plan to recruit consenting established couples and record a partner mapping

p(i) for each i (used only for evaluation).

For a chosen scoring model, we compute a pairwise score matrix S(i, j) for all i ̸= j (and, when

available, uncertainty diagnostics such as confidence radii). This score matrix induces a per-person

ranking of candidates for each anchor i by sorting S(i, j) in descending order. Separately, matching

solvers consume either (i) these scores directly or (ii) derived preference lists/tiers to produce a

cohort-level matching outcome M.

6.2. Metrics

The planned evaluation reports three families of metrics: (i) rank-based partner retrieval, (ii)

true-vs-random separation, and (iii) matching-level stability/quality diagnostics.

6.2.1. Rank-based partner retrieval metrics For each anchor participant i, let ranki be the 1-

indexed position of their true partner p(i) in the sorted list of candidates (rank 1 is best). We

report:

• Hit@K: 1
N ∑i 1{ranki ≤ K}.

• MRR: 1
N ∑i

1
ranki

.

• Median/mean rank: the median and mean of {ranki}N
i=1.

• Mutual@K: the fraction of couples (a,b) such that a ranks b in top K and b ranks a in top K.

These metrics evaluate the pairwise scoring function as a reciprocal ranking model.
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6.2.2. True-vs-random separation metrics (AUC and lift) In addition to within-cohort ranks, we

evaluate whether true-couple scores are separated from non-partner scores. For each couple (a,b),

we sample non-partners (e.g., b′ drawn uniformly from I \{a,b}) and compare the distribution of

true scores S(a,b) against sampled non-partner scores S(a,b′). We report:

• AUC_std: the probability that a randomly chosen true score exceeds a randomly chosen sampled

non-partner score (ties count as 0.5), i.e., the usual Mann–Whitney AUC convention Hanley and

McNeil [1982], Mann and Whitney [1947].

• Lift: a scale-dependent diagnostic comparing the mean true score to the mean sampled non-partner

score (exact definition is reported by evaluate_couples.py).

Repository AUC convention. Some repository scripts compute an inverted AUC due to rank-

order conventions. To avoid ambiguity, we will report both the raw repository quantity (when

applicable) and the standard AUC above, using the relation AUC_std = 1−AUC_repo when the

inversion applies.

6.2.3. Matching-level diagnostics When a matching solver produces a cohort-level matching M,

we additionally report:

• Match rate: fraction of participants matched (or fraction left unmatched).

• Total weight: ∑(i, j)∈M wi j for a chosen symmetric weight matrix (typically derived from S(i, j)).

• Blocking pairs: number (or fraction) of blocking pairs under the induced preference lists. For a

pair (i, j), (i, j) is blocking if both i and j strictly prefer each other to their assigned outcome (or

to being unmatched).

These diagnostics help distinguish good rankings from good global outcomes, and quantify

trade-offs between stability and weight optimality.

6.3. Model selection and train/test protocol

Learned models (soft-gated training, evolutionary search, and any trained PAM variants) require a

train/test protocol to avoid overfitting. Our default plan is couple-wise cross-validation: split couples

into folds, train on the participants in training couples, select hyperparameters on a validation fold,
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and report metrics on held-out couples. This prevents information leakage where one member of a

couple appears in training and the other in testing.

For evolutionary search, the objective in Section 4.4.4 is used only for selecting configurations

on training/validation data; all reported metrics use held-out data. For soft-gated training, we will

similarly tune regularization and optimizer hyperparameters via validation.

6.4. Planned analyses and diagnostics

Beyond aggregate metrics, we plan to report:

• Ablations: sensitivity to overlap thresholds, domain multipliers, priority boosts, and uncertainty

parameters (e.g., LCB confidence level).

• Per-domain contributions: how much each domain contributes to S(i, j) for true couples vs

non-partners.

• Failure-mode analysis: cases where p(i) ranks poorly, decomposed by missingness, strictness of

acceptability, and high-uncertainty domains.

• Uncertainty calibration: whether low-LCB pairs correspond to higher observed ranking error.

Statistical uncertainty in metrics will be summarized with bootstrap confidence intervals over

couples/participants and, where appropriate, permutation tests for paired comparisons between

models.

7. Limitations and Ethical Considerations

7.1. Data scarcity and overfitting risk

IRB approval is pending, so this draft reports no human-subject empirical results and no statistically

grounded model comparisons. Even after approval, early cohorts may be small, which has several

implications:

• Low statistical power: small cohorts make it difficult to distinguish models whose performance

differs modestly.

• Overfitting risk: learned models (soft-gated, trained PAM variants, evolutionary selection) can
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fit idiosyncrasies of a cohort rather than general signal.

• High metric variance: rank-based metrics such as Hit@K can change materially when a single

participant’s partner rank changes.

• Selection bias: established couples used for offline ground truth may not represent early-stage

dating preferences or the broader target population.

The pipeline includes several design choices intended to mitigate these risks: uncertainty-aware

scoring (LCBs), explicit regularization, couple-wise cross-validation, and reporting of confidence

intervals and ablations (Section 6).

7.2. IRB gating and deployment constraints

IRB approval is pending. Until approval, the questionnaire cannot gather any participants or be

deployed for broad recruitment, and algorithm development must be framed as offline prototyping

and pipeline validation. This report therefore does not propose or claim any real-world effect sizes

or deployment success.

7.3. Consent, privacy, and data minimization

The raw dataset contains sensitive information (demographics, personal preferences) and PII. Any

real deployment must ensure informed consent, clear communication of data use, and the ability to

withdraw. A conservative default is data minimization: collect only what is needed for matching,

store it securely, and avoid publishing raw responses.

In this project, export.csv is treated as private. Derived artifacts (scores, ranks, and aggregate

tables) are generated without copying raw PII fields.

7.4. Transparency and the risk of over-exposure

Transparency is a design goal: participants should understand how matches are produced. However,

transparency can also create risks. If explanations reveal too much about a participant’s acceptability

constraints, others might infer sensitive attributes (e.g., religion, political views) even without

explicit disclosure. A practical explainability layer should therefore:
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• explain categories (“we matched on values and communication”) rather than raw answers,

• allow users to opt out of showing certain explanations, and

• avoid exposing another participant’s declared constraints.

7.5. Bias, fairness, and social harms

Dating and friendship matching systems can encode and amplify bias. If certain preferences

correlate with protected attributes, then respecting preferences can still create disparate outcomes.

In a small campus community, harm can also be social rather than statistical: embarrassment,

conflict, or harassment.

More broadly, compatibility claims in online dating require epistemic humility. Finkel et al.

[2012] argue that many matching and compatibility claims lack strong empirical support, and that

transparent evaluation is essential before making strong claims about algorithm effectiveness. The

present work attempts to document and evaluate its scoring procedures transparently, but does not

claim that any algorithm will produce satisfying matches in deployment.

TIGERMATCH does not yet implement fairness constraints, differential privacy, or safety reporting

mechanisms. These are important requirements for any deployment beyond a research pilot.

7.6. Strategic behavior and incentives

The system relies on participants specifying acceptability sets and importance weights. Even with

stable matching theory, participants may have incentives to misreport preferences if they believe it

improves their outcomes [Dubins and Freedman, 1981, Roth, 1982]. Participants might broaden

acceptability to appear compatible with more people, or set many items to Mandatory. Mitigations

include:

• limiting extreme weights,

• presenting users with the trade-off between strictness and matchability, and

• designing interfaces that encourage honest reporting.

Future work must address how to present elicitation questions, how to handle strategic behavior,

and whether mechanisms should be made robust to manipulation.
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8. Conclusion and Future Work

This IW implements a code-grounded pipeline for reciprocal compatibility scoring and cohort-

based matching based on structured triad questionnaire data. The implementation includes: (i)

a deterministic baseline with item-level acceptability, importance weights, domain multipliers,

priority boosts, and finite-overlap penalties (final_match); (ii) a probabilistic acceptability model

with uncertainty-aware LCB scoring (PAM+LCB); (iii) domain-wise distance-kernel scoring and

learning (configurable scoring, soft-gated training, and evolutionary configuration search); and (iv)

a merged IDF+LCB pipeline that produces tie-aware preference tiers for matching solvers.

Because IRB approval is pending, this draft reports no human-subject empirical results. Instead, it

documents the methodology in a code-linked way and specifies an evaluation framework (Section 6)

that can be run verbatim once IRB-approved data collection begins.

8.1. Immediate next steps (within current constraints)

1. Reproducibility and documentation. Consolidate evaluation commands, inputs, and outputs

into a reproducible script (or Makefile) with pinned environments and fixed random seeds.

2. Pipeline validation without human data. Expand unit tests and synthetic-data tests that validate

the end-to-end code path (questionnaire parsing→ scores→ metrics/matchings), including edge

cases such as missing values, ties, and near-zero overlap.

3. Metric robustness diagnostics. Add explicit diagnostics for tie handling, missingness, and

overlap thresholds to ensure that small preprocessing changes do not produce brittle metric

behavior.

8.2. Future work (requires IRB-approved dataset)

1. Data collection and evaluation. Recruit a larger cohort (including consenting established

couples for offline ground truth) and execute the evaluation framework, including ablations and

uncertainty quantification.

2. Stability-aware learning objectives. The current learning procedures optimize ranking proxies
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(Hit@K, Mutual@K, AUC) rather than stability of the induced matching. A natural extension is

to incorporate penalties for predicted blocking pairs under induced matchings.

3. Ties and incompleteness modeling. Preference tiers in the merged pipeline (Section 4.5.3)

already represent ties. Future work should systematically study stability and optimality under

ties/incomplete lists (SMTI).

4. Fairness, safety, and user experience. Incorporate fairness constraints (e.g., exposure par-

ity), safety reporting mechanisms, and user-facing explanations that avoid leaking sensitive

acceptability constraints.

5. Evaluation beyond couple recovery. Offline couple-recovery metrics are only a first sanity

check. Ultimately, user-centered outcomes (mutual interest, conversation quality, perceived

safety) require surveys, controlled deployments, and qualitative feedback.
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A. Appendix: Questionnaire summary

This appendix provides a more detailed summary of questionnaire structure. For the authoritative

item list and prompts, see data/questions.json.
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A.1. Representative items

The following examples illustrate how domains are operationalized:

• Values: importance of religion, politics, long-term goals, honesty; PVQ-inspired items.

• Communication: comfort with conflict, directness, texting frequency, emotional openness.

• Lifestyle: sleep schedule, activity level, drinking/smoking, routines.

• Personality: TIPI-style statements about extraversion, conscientiousness, emotional stability.

• Social: going out versus staying in, group size preferences, spontaneity.

• Friendship: integration with friend groups, shared hobbies, time allocation between partner and

friends.

B. Appendix: Maximum-weight stable matching formulation

This appendix expands the integer program used for maximum-weight stable matching.

B.1. Inputs: preferences and weights

The solver assumes:

• a set of agents P,

• a strict preference order ≻i over acceptable partners for each agent i (ties are broken deterministi-

cally if needed), and

• a symmetric weight wi j = w ji for each acceptable pair (i, j).

In TIGERMATCH, preferences are derived by sorting candidates by a score S(i, j). Weights are

typically set to the same scores (or a monotone transform), so that the objective prefers pairings

with higher compatibility.

B.2. Decision variables

For each unordered pair {i, j} of agents, define a binary decision variable xi j ∈ {0,1} indicating

whether i is matched to j. We set xi j = x ji conceptually; in implementation it’s convenient to index

variables by ordered pairs but constrain symmetry or create variables only for i < j.
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B.3. Matching constraints

Each agent is matched to at most one partner:

∑
j ̸=i

xi j ≤ 1 ∀i ∈ P.

(If a perfect matching is desired, one can replace ≤ 1 with = 1, but this is inappropriate in many

dating settings where being unmatched is preferable to an unacceptable match.)

B.4. Stability constraints

A pair (i, j) blocks a matching if: (i) i is either unmatched or matched to someone they like less

than j, and (ii) j is either unmatched or matched to someone they like less than i. To prevent this,

we enforce for every acceptable pair (i, j):

xi j + ∑
k≻i j

xik + ∑
ℓ≻ ji

xℓ j ≥ 1.

Intuitively, if i is not matched to j and i is not matched to someone preferred over j, then j must be

matched to someone preferred over i (or vice versa). Otherwise (i, j) would be a blocking pair.

B.5. Objective

The objective maximizes total weight:

max ∑
i< j

wi jxi j.

When weights are derived from TIGERMATCH compatibility scores, this produces a stable matching

that is as compatible as possible under the given preference ordering.

B.6. Practical notes

Two practical considerations matter in small markets:

• Non-existence and feasibility. For some preference profiles, stability constraints may make

42



the integer program infeasible. This reflects the fact that a stable matching may not exist (as in

stable roommates). In that case, one may relax stability or allow additional structure (e.g., ties or

unmatched agents).

• Sensitivity to tie-breaking. If many candidates are near-tied in score, deterministic tie-breaking

can change which pairs count as blocking. A robust approach is to either keep explicit tie classes

or to solve an optimization that accounts for ties directly.

C. Appendix: AUC convention note

The repository function auc_true_vs_random computes an AUC-like quantity using a Mann–

Whitney formulation, but with ranks assigned in descending score order. With that convention, the

returned value corresponds to:

AUCrepo = Pr
(
Strue < Srand

)
+ 1

2 Pr
(
Strue = Srand

)
,

which is the complement of the standard AUC:

AUCstd = 1−AUCrepo.

To prevent confusion, the evaluation framework in Section 6.2 defines and reports AUCstd explicitly.

For completeness, the relevant code paths are:

• algorithm/eval/evaluate_couples.py::auc_true_vs_random,

• algorithm/eval/harness.py::auc_true_vs_random,

• and a duplicate implementation in algorithm/paper/compare_all.py::auc_true_vs_-

random.

D. Appendix: Reproducibility

The following commands rebuild key artifacts (from the algorithm/ directory) once IRB-approved

private inputs ../export.csv and ../couples.csv are available locally:
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• Build question metadata:

python3 tools/build_meta_from_repo.py \

--questions_json ../data/questions.json \

--export_csv ../export.csv \

--out meta.json

• Evaluate baseline:

python3 eval/evaluate_couples.py \

--export_csv ../export.csv \

--couples_csv ../couples.csv \

--meta_json meta.json \

--questions_json ../data/questions.json \

--outdir out

• Evaluate PAM variants:

python3 scoring/score_pairs_cli.py \

--export_csv ../export.csv \

--meta_json meta.json \

--questions_json ../data/questions.json \

--delta 0.10 \

--out scores.csv

python3 eval/evaluate_pam.py \

--export_csv ../export.csv \

--couples_csv ../couples.csv \

--meta_json meta.json \

--questions_json ../data/questions.json \

--delta 0.10 \

--out out/summary_pam.csv

• Build distance-kernel feature tensors:

python3 preprocess/normalize.py \

--export_csv ../export.csv \

--meta_json meta.json \

--out norm.json

python3 features/build_pair_tensors.py lcbs \

--export_csv ../export.csv \

--meta_json meta.json \

--questions_json ../data/questions.json \
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--delta 0.10 \

--out lcbs.npz

python3 features/build_pair_tensors.py dists \

--export_csv ../export.csv \

--meta_json meta.json \

--norm_json norm.json \

--out dists.npz

python3 features/make_features.py \

--lcbs lcbs.npz \

--dists dists.npz \

--out features.npz

• Train the soft-gated model:

python3 ml/soft_gated_trainer.py \

--features features.npz \

--couples_csv ../couples.csv \

--neg_k 20 \

--epochs 50 \

--outdir out_soft

python3 eval/harness.py \

--features features.npz \

--couples_csv ../couples.csv \

--config out_soft/best_config.json \

--outdir out_soft \

--topk 3

• Run evolutionary search:

python3 ml/evolutionary_trainer.py \

--features features.npz \

--couples_csv ../couples.csv \

--pop 80 \

--gens 120 \

--topk 3 \

--outdir out_evo

python3 eval/harness.py \

--features features.npz \

--couples_csv ../couples.csv \

--config out_evo/best_config.json \

--outdir out_evo \

--topk 3

• Run merged IDF+LCB pipeline and matching:
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python3 matching/merged_pipeline.py \

--export_csv ../export.csv \

--couples_csv ../couples.csv \

--meta_json meta.json \

--outdir out_merged \

--rho 0.35 --delta 0.10 --tau 0.05 --mu 0.03 --topk 2
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